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Abstract: We propose and demonstrate time-domain equivalents of spatial 
zone plates, namely temporal zone plates, as alternatives to conventional 
time lenses. Both temporal intensity zone plates, based on intensity-only 
temporal modulation, and temporal phase zone plates, based on phase-only 
temporal modulation, are introduced and studied. Temporal zone plates do 
not exhibit the limiting tradeoff between temporal aperture and frequency 
bandwidth (temporal resolution) of conventional linear time lenses. As a 
result, these zone plates can be ideally designed to offer a time-bandwidth 
product (TBP) as large as desired, practically limited by the achievable 
temporal modulation bandwidth (limiting the temporal resolution) and the 
amount of dispersion needed in the target processing systems (limiting the 
temporal aperture). We numerically and experimentally demonstrate linear 
optical pulse compression by using temporal zone plates based on linear 
electro-optic temporal modulation followed by fiber-optics dispersion. In 
the pulse-compression experiment based on temporal phase zone plates, we 
achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, 
representing an experimental TBP larger than 226 using a phase-modulation 
amplitude of only ~0.8π rad. We also numerically study the potential of 
these devices to achieve temporal imaging of optical waveforms and 
present a comparative analysis on the performance of different temporal 
intensity and phase zone plates. 
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OCIS codes: (070.1170) Analog optical signal processing; (320.5520) Pulse compression; 
(110.6915) Time imaging. 
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1. Introduction 

The space-time duality arises from the mathematical equivalence between paraxial diffraction 
in the spatial domain and dispersive propagation in the time domain [1–19]. Using the mature 
concepts of free-space Fourier optics, researchers have developed a wide variety of equivalent 
methods for temporal processing based on this general idea. Among many others, systems for 
temporal imaging [4–7], linear compression [8–10], time-to-frequency mapping [11, 12], and 
frequency-to-time mapping [13–16] of optical pulse waveforms have been realized by 
suitably combining dispersion and time lenses in the time domain, which are the temporal 
counterparts of diffraction and lenses in the spatial domain. 

A time lens is conventionally implemented by imparting a quadratic phase shift, or linear 
frequency chirp, across a signal (e.g. a pulse) in the temporal domain. It can be realized by 
linear [7–11] or nonlinear [5, 6, 12, 13] processes. In particular, a linear time lens can be 
practically implemented by using an electro-optic phase modulator (EOPM) driven by a 
sinusoidal-like RF signal [1–5, 7–11]. Linear time lenses offer important practical advantages 
over nonlinear implementations, including wavelength-preserving operation, lower power 
consumption, and easier reconfiguration [19]. A main figure of merit of a time lens is its time-
bandwidth product (TBP), namely the product of its temporal aperture (typically defining the 
maximum duration of the signal under analysis) and its frequency bandwidth (typically 
defining the system temporal resolution). In conventional linear time-lens methods, there is a 
tradeoff between the system temporal aperture and frequency bandwidth, and in particular, 
the TBP ~Γ0/2π is limited by the achievable phase-modulation amplitude peak Γ0 [3, 4]. 
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Unfortunately, a high phase-modulation amplitude, e.g. exceeding 10π [10, 12, 19], is hard to 
achieve in a practical EOPM device. 

The temporal equivalent of a spatial Fresnel zone plate (FZP) has been proposed as an 
alternative to conventional time lenses [20]. However, this scheme is greatly limited by the 
need to implement a temporal modulation with an ideally infinite bandwidth. In this 
communication, we generalize this concept into more practical and effective “temporal zone 
plate” implementations. “Temporal zone plates” are defined as the time-domain equivalents 
of spatial zone plates [20–29]. We consider two kinds of schemes, based on intensity and 
phase modulation, respectively referred to as “temporal intensity zone plates” and “temporal 
phase zone plates”. Two different sub-classes of temporal zone plates are additionally 
introduced and investigated for each of the two considered cases (phase and intensity 
modulated systems, respectively). We show how in the proposed temporal zone plate 
schemes, the temporal aperture can be designed to be as long as desired without affecting the 
time-lens frequency bandwidth. As such, temporal zone plates can directly overcome the 
severe TBP limitations of present linear time-lens methods. In practice, the temporal aperture 
will be limited by the amount of dispersion needed in the target processing system, whereas 
the time-lens frequency bandwidth is limited by the bandwidth of the modulating signal. 

Temporal intensity zone plates are here numerically and experimentally demonstrated for 
linear optical pulse compression using an electro-optic intensity modulator (EOIM). Using an 
electronic waveform generated from a 24 Gsamples/s arbitrary waveform generator (AWG), 
we achieve an experimental temporal resolution of ~47.9 ps over a temporal aperture of ~1.88 
ns, representing a TBP > 39. Temporal phase zone plates are also experimentally 
demonstrated for linear optical pulse compression using an EOPM. In this later case, using a 
phase-modulation amplitude limited to ~0.8π rad and an electronic waveform generated from 
a 24 Gsamples/s AWG, we achieve an experimental temporal resolution of ~25.5 ps over a 
temporal aperture of ~5.77 ns, representing a TBP > 226. Notice that a TBP of 39 (or 226) is 
difficult to achieve with conventional linear electro-optic time-lens methods, since an 
extremely high phase-modulation amplitude exceeding 39π (or 226π) rad would then be 
required [3, 4, 10]. Correspondingly, the needed drive-voltage amplitude should be as high as 
39Vπ (or 226Vπ), where Vπ is the phase-modulator switching voltage. In our experiments, a 
much lower drive-voltage amplitude of only ~Vπ is used. We also numerically demonstrate 
the potential of temporal intensity and phase zone plates to create temporal imaging systems. 

This paper discusses fundamental and practical considerations of temporal zone plates. 
Section 2 provides the principle, numerical simulations and experiments for temporal 
intensity zone plates. In section 3, the principle, numerical simulations and experiments for 
temporal phase zone plates are reported. Section 4 describes the temporal imaging 
performance of temporal intensity and phase zone plates, whereas the main conclusions of 
this work are summarized in Section 5. 

2. Temporal intensity zone plates 

In this section, we derive analytical expressions for temporal intensity zone plates. Then we 
prove our theory by means of numerical simulations and experiments. 

2.1 Principle of operation 

The first zone plate, called a FZP, was discovered by Lord Rayleigh in 1871 [21]. It was 
made out of a plate with alternating transmitting and opaque concentric rings with diameters 
being proportional to the square roots of the orders of the rings, as illustrated in Fig. 1(a). This 
configuration ensures that all the light passing through the plate, around the target 
wavelength, have a phase between φ0 to φ0 + π at the focus, where φ0 is a constant phase. In 
this way, the light at the focus is enhanced as a result of constructive interference. Note that 
the modulation profile consists of many rectangular shapes, which may not be easy to be 
implemented in practice. Therefore, Gabor zone plates (GZPs) were subsequently proposed to 
facilitate the device realization [24]. GZPs are implemented by replacing the rectangular 
shapes with approximately sinusoidal shapes. Mathematically, the amplitude-transmittance 
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functions of FZPs and GPZs are defined as AF(x) = 1/2 + (1/2) sgn[cos(γ x2)] and AG (x) = 1/2 
+ (1/2) cos(γx2), respectively, where γ is a constant, and sgn[cos(γx2)] =  ± 1 depends on the 
sign of cos(γx2). As illustrated in Fig. 1, the time-domain analogs of these spatial zone plates 
would be temporal intensity modulation devices, which have the same amplitude-
transmittance functions but as a function of the time variable (t), particularly, 

 ( ) ( ) ( )21 2 1 2 sgn cos ,FA t at = +    (1) 

 ( ) ( ) ( )21 2 1 2 cos ,GA t at= +  (2) 

for −∆t /2 <t <∆t /2, where ∆t is the temporal aperture, and a/π is the modulation frequency 
chirp, which is related with the time-lens frequency chirp. Using a Fourier series, the 
amplitude-transmittance functions of the temporal FZP and the temporal GZP in Eqs. (1) and 
(2) can be re-written as 

 ( ) ( ) ( )2sin 2 exp ,F n
A t n n jnatπ π∞

=−∞
=     (3) 

 ( ) ( ) ( )1 2 2

1
1 2 4 exp ,G n

A t n jnat
=−

= −  (4) 

respectively. Noting that temporal quadratic phase structures can be interpreted as being 
equivalent to time lenses, the above equations confirm that these amplitude-transmittance 
functions are equivalent to a set of positive and negative time lenses with different focal times 
(i.e., each with a different frequency chirp, depending on the integer order n), plus a bias 
term. Considering the phase equation typically used for a time lens φ (t) = ω0 t

2/ 2fT, where ω0 
is the optical carrier frequency and fT is the focal time, the focal time of the n-th term in any 
of the proposed temporal intensity zone plates is fTn = ω0/2na. Thus, the focal time is 
inversely proportional to the integer order n, or in other words, the time-lens frequency chirp 
increases linearly with the order n. In particular, the time-lens frequency chirp for the n-th 
order term is defined as na/π. It is also important to note that similarly to their spatial-domain 
counterparts, temporal intensity zone plates do not focus all the input light around the desired 
focal time, as illustrated in Fig. 1(b). The proportion of light focused by the n-th order term 
can be obtained by the square of its coefficient in the Fourier series [Eqs. (3) and (4)]. In 
particular, the light-collecting efficiencies (i.e., the proportion of focused light) around the n-
th focal time for temporal FZP and GZP devices are 

 ( ) 2
sin 2 ,F n nη π π=     (5) 

 ( )221 2 4 .G nη = −  (6) 

Clearly, for any of the two proposed implementations, the light-collecting efficiency quickly 
decreases with the order n. 
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Fig. 1. Space-time duality. (a) Light focusing by a spatial (intensity) zone plate. (b) Pulse 
compression by a temporal intensity zone plate. 

The proposed temporal intensity zone plates can be practically realized by using an 
EOIM, i.e. a conventional electro-optic Mach-Zehnder modulator biased at quadrature, which 
is driven by a modulating electronic waveform with a temporal profile defined as the square 
of the expression in Eqs. (1) or (2). In practice, the electronic waveforms can be obtained 
from a high-speed AWG. For a given chirp factor a, the temporal aperture must be limited 
due to finite bandwidth of the AWG. According to the Nyquist-Shannon sampling theorem 
[30], the sampling rate fs of the AWG should be at least two times larger than the bandwidth 
of the electronic waveform. Consequently, the temporal apertures of temporal FZPs and GZPs 
must satisfy the following inequalities ∆tF < fs / 3.5|a| and ∆tG < fsπ/|a|, respectively. Notice 
that the total frequency bandwidth excursion produced by a quadratic phase φ(t) = nat2 along 
an aperture ∆t is ∆f = |na|∆t/π [4]. This total bandwidth excursion determines the temporal 
resolution of the time-lens system. In particular, for the case of a temporal imaging system 
with a rectangular temporal aperture function, the temporal resolution (δτ) is given by δτ = 
1/∆f [4, 7]. Hence, the TBPs and temporal resolutions of temporal FZPs and GZPs are finally 
determined by the following inequalities 

 3.5 ,F sn fδτ π≥  (7) 

 1 .G sn fδτ ≥  (8) 

 2= 12.6 ,F F F sTBP t n f aδτ πΔ ≤  (9) 

 2= ,G G G sTBP t n f aδτ πΔ ≤  (10) 

Equations (7) and (8) show that the temporal resolutions increase as 1/|n|fs. Nonetheless, 
according to Eqs. (5) and (6), most of the light in either a temporal FZP or a temporal GZP is 
focused in the order |n| = 1 and as a result, only these orders can be used in practical designs. 
Thus, as defined by Eqs. (7) and (8) for |n| = 1, the temporal resolution in any of these two 
implementations is directly limited by the modulating signal frequency bandwidth, in turn 
fixed by the AWG bandwidth. In addition, the temporal apertures, and corresponding TBPs in 
Eq. (9), are inversely proportional to the chirp factor |a|, and consequently, they can be made 
arbitrarily large by accordingly lowering down this factor. However, signal-processing 
systems are typically based on the combination of a time lens and dispersive elements [7, 10, 
12, 13]. In these schemes, the time-lens frequency chirp is typically inversely proportional to 
the dispersion value in the system: a lower time-lens frequency chirp necessarily translates 
into the need for a higher amount of dispersion. Thus, the temporal apertures and TBPs of 
temporal intensity zone plates are ultimately limited by the amount of dispersion that can be 
practically introduced in the system. Finally, Eqs. (7)-(10) also show that temporal GZPs have 
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better TBPs and resolutions than temporal FZPs, which is associated with the fact that in 
practice, the sinusoidal profile of a GZP is easier to realize, i.e., it requires lower sampling 
rate, than the rectangular profile of a FZP. Thus, the experimental demonstrations reported in 
what follows focus on temporal GZPs. 

2.2 Numerical simulations and experiments 

Temporal GZPs are numerically and experimentally demonstrated, while temporal FZPs are 
numerically verified. A following brief comparison is then given. 

2.2.1 Temporal Gabor zone plate 

To demonstrate the introduced temporal intensity zone plate concept, we set up a linear 
optical pulse compression experiment based on 1st-order temporal GZPs. An illustration of 
the conducted experiment is shown in Fig. 2. Light from a continuous-wave (CW) laser at a 
wavelength of 1,550 nm is amplified and sent through a 40-GHz EOIM (Vπ = 4.6 V), which is 
driven by the electronic waveforms generated by a 24 Gsamples/s AWG and amplified by a 
12.5-GHz electronic amplifier. The modulated light is sent through a reflective linearly 
chirped fiber Bragg grating (LCFBG), which introduces a predominantly 1st-order dispersion 
over a bandwidth of ~0.5nm. After dispersion, the light is measured with a 45-GHz photo-
detector coupled to an electronic sampling oscilloscope. 

 

Fig. 2. Experimental scheme for linear optical pulse compression using the temporal GZP 
concept, with the terminology used in the text. 

We characterized our system in two regimes of dispersion introduced by the LCFBG, 
which are 10000 ps/nm and 6667 ps/nm, respectively. The ideal optical intensity waveforms 
(green dotted curves), which are calculated by Eq. (2), are shown in Fig. 3. The slight 
distortions between the electronic modulation waveforms (blue dashed curves, directly 
measured with the same sampling oscilloscope, right vertical axis) and ideal optical 
waveforms are mainly due to the limited bandwidth of the AWG. A low drive-voltage 
amplitude of ~Vπ is used. There is a good agreement between the electronic modulation 
waveforms and the measured optical waveforms (black solid curves). In the pulse 
compression experiments, the time-lens frequency chirp must be fixed to exactly compensate 
for the LCFBG dispersion. Thus, a lower chirp factor, |a|, corresponding to a longer aperture, 
is needed as the dispersion is increased. As a result, the temporal apertures for the two 
dispersion regimes demonstrated here are 1.88 ns and 1.22 ns, respectively. 
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Fig. 3. Ideal optical waveforms (left vertical axis), measured electronic waveforms (right 
vertical axis), and measured optical waveforms (left vertical axis) for temporal intensity 
modulation in the implemented temporal GZPs when the used dispersion values are (a) 10000 
ps/nm and (b) 6667 ps/nm, respectively. All optical waveforms are represented in normalized 
units. 

Figure 4 shows the spectra of the CW light (red dotted curves) and the modulated light 
(black solid curves). After the intensity modulation, the spectra are effectively broadened. In 
particular, the modulated light in Fig. 4(a) has a larger spectrum than that of Fig. 4(b). 
Therefore, the output with shorter pulse width will be obtained in the first experiment. Figure 
5 shows the resulting compressed optical pulses measured at the system output. As predicted 
in Fig. 4, for the two dispersion values, the full width at half maximum (FWHM) of the 
experimentally measured compressed pulses are 47.9 ps and 57.6 ps, respectively, whereas 
the corresponding ideal values calculated through numerical simulations are 45.2 ps and 48.6 
ps, respectively. The excellent agreement for the first experiment clearly confirms our 
theoretical predictions, while the larger distortion in the second experiment is mainly 
attributed to the fact that the corresponding modulating electronic waveform deviates more 
significantly from the ideal modulation, as shown in Fig. 3. There is also a fairly good 
agreement between the simulation and experiment concerning the temporal side-lobe 
structures, which are mainly induced by the presence of undesired-order (n = 0 and −1) focal 
terms. 

 

Fig. 4. Spectra of the CW light and the modulated light for two regimes in which dispersion 
values of (a) 10000 ps/nm and (b) 6667 ps/nm are used, respectively. The spectra are measured 
by an optical spectrum analyzer, which has a resolution of 0.01 nm. 
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Fig. 5. Temporally compressed intensity pulse waveforms in the ideal case and experiment 
using temporal GZPs when the used dispersion values are (a) 10000 ps/nm and (b) 6667 
ps/nm, respectively. All waveforms are represented in normalized units. 

2.2.2 Temporal Fresnel zone plate 

The realization of a temporal FZP needs a modulating signal with quite a large bandwidth, 
ideally infinite (see section 2.2.3), which is difficult to realize in practice. As a result, we 
demonstrate the potential of pulse compression using 1st-order temporal FZPs through 
numerical simulations. The system scheme is the same as the one shown in Fig. 2. In the 
numerical simulation, we also characterized our system in two regimes of dispersion, which 
are 10000 ps/nm and 6667 ps/nm, respectively. To fully evaluate the performance of the 
temporal FZP, a comparison of pulse compression based on a temporal FZP and that based on 
a temporal GZP is illustrated in Fig. 6. The intensity-modulation profiles of temporal FZPs 
(red solid curves) and temporal GZPs (blue dashed curves) are shown in Fig. 6(a) and 6(b). 
These profiles are defined by Eqs. (1) and (2), respectively. The temporal intensity profiles 
and spectra of the corresponding output compressed pulses are shown in Fig. 6(c)-6(f). For 
the temporal FZPs shown in Fig. 6(a) and 6(b), the peak powers of the outputs [red solid 
curves in Fig. 6(c) and 6(d)] are 7 and 4.85 times larger than the peak power of the input CW 
light, respectively. As predicted in Eqs. (5) and (6), the temporal GZP suffers from a 
somewhat inferior light-collecting efficiency. In particular, for the temporal GZPs shown in 
Fig. 6(a) and 6(b), the peak powers of the outputs [blue dashed curves in Fig. 6(c) and 6(d)] 
are 4.8 and 3.5 times larger than the peak power of input CW light, respectively. Similar side-
lobe structures in Fig. 6(c)-6(f) are induced by the presence of undesired-order focal terms. 

 

Fig. 6. The intensity-modulation profiles of temporal FZPs and temporal GZPs when the used 
dispersion values are (a) 10000 ps/nm and (b) 6667 ps/nm, respectively. The output 
compressed pulses in (c), (e) and (d), (f) correspond to (a) and (b), respectively. 

2.3 Brief comparison between the two intensity zone plate concepts 

As the intensity-modulation profiles for two intensity zone plates are different, different 
modulation bandwidth will be needed. Figure 7(a), 7(c) and 7(b), 7(d) show the spectra of the 
modulating signals shown in Fig. 6(a) and 6(b), respectively. In particular, the modulation 

#189054 - $15.00 USD Received 1 May 2013; revised 27 Jun 2013; accepted 28 Jun 2013; published 5 Jul 2013
(C) 2013 OSA 15 July 2013 | Vol. 21,  No. 14 | DOI:10.1364/OE.21.016814 | OPTICS EXPRESS  16821



bandwidth for temporal GZP is limited, while the modulation bandwidth for temporal FZP is 
ideally infinite, as shown in Fig. 7(c) and 7(d). Therefore, a temporal GZP is easier to realize 
than a temporal FZP in terms of modulation bandwidth. 

 

Fig. 7. The spectra of the modulating signals shown in Fig. 6. Figure 7(a) and 7(b) correspond 
to Fig. 6(a) and 6(b), respectively. Figure 7(c) and 7(d) show a zoom around the bottom of Fig. 
7(a) and 7(b), respectively. 

According to Eqs. (5) and (6), most of the light in either a temporal FZP or a temporal 
GZP is focused in the order |n| = 1. In particular, the light-collecting efficiencies of 1st-order 
temporal FZP and 1st-order temporal GZP are 1/π2 and 1/16, respectively. Thus, a temporal 
GZP suffers from a slightly inferior light-collecting efficiency. 

Apart from these differences, both the temporal GZP and the temporal FZP can offer large 
temporal apertures by the use of large dispersion. The resolutions of these temporal intensity 
zone plates are both directly limited by the bandwidth of the modulating signals. Moreover, 
the relatively low light-collecting efficiency and large background may limit the range of 
applications of these temporal intensity zone plates. 

3. Temporal phase zone plates 

In this section, we derive analytical expressions for temporal phase zone plates. Then we 
prove our theory by means of numerical simulations and experiments. 

 

Fig. 8. Space-time duality. (a) Light focusing by a spatial phase zone plate. (b) Pulse 
compression by a temporal phase zone plate. 

3.1 Principle of operation 

To overcome the two difficulties of a spatial (intensity) zone plate, i.e., low light-collecting 
efficiency and high background, Lord Rayleigh proposed the phase-reversal zone plate in 
1888 [25] and Wood demonstrated its advantages over Fresnel zone plates 10 years later [26]. 
In the spatial domain, there are two kinds of phase zone plates, called as Rayleigh-Wood 
phase reversal zone plates (RWZPs) and Gabor phase-shift zone plates (GPZPs) [25–27]. 
Specifically, the RWZP consists of a series of concentric ring-shaped zones, which are shown 
in Fig. 8(a). The path from a point on one certain zone to the focus has a variable range of 
half a wavelength. By adding or subtracting a π rad shift across the light going through 
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alternate zones, the wavefield at the focus will be enhanced by constructive interference. The 
GPZP is also a spatial phase modulation device. Differently, the GPZP has an approximately 
sinusoidal modulation profile. Although the GPZP has a somewhat inferior light-collecting 
efficiency compared to the RWZP, it is easier to realize in practice [27]. Mathematically, the 
phase-modulation profiles of these two zone plates can be respectively expressed as φRW(x) = 
π/2 + (π/2)sgn[cos(γx2)] and φGP(x) = Γ0′cos(γx2)] where γ is a constant, Γ0′ is the phase-
modulation amplitude, and sgn[cos(γx2)] =  ± 1 depends on the sign of cos(γx2). Therefore, as 
illustrated in Fig. 8, the time-domain analogs of these spatial phase zone plates would be 
temporal phase modulation devices introducing equivalent phase shifts but along the time axis 
(t), particularly, 

 ( ) ( ) ( )22 2 sgn cos ,RW t atφ π π  = +    (11) 

 ( ) ( )2
0 cosGP t atφ = Γ  (12) 

for −∆t/2<t<∆t/2, where ∆t is the temporal aperture, a/π is the phase-modulation frequency 
chirp, and Γ0 is the phase-modulation amplitude. Using a Fourier series and a Bessel function 
identity [28, 29], the instantaneous phase transformations of the temporal RWZP and the 
temporal GPZP in Eqs. (11) and (12) can be re-written as 

 ( ) ( ) ( ) ( )2

, 0
exp 2 sin 2 exp ,RW RW n n

H t j t n n jnatφ π π∞

=−∞ ≠
= =        (13) 

 ( ) ( ) ( ) ( )2
0exp exp ,n

GP GP nn
H t j t j J jnatφ ∞

=−∞
= = Γ     (14) 

respectively, where Jn is the n-th order Bessel function. The above equations confirm that 
these phase-modulation functions are equivalent to a set of positive and negative time lenses 
at different focal times, i.e., each with a different frequency chirp, depending on the integer 
order n. Comparing the above instantaneous phase transformations with the phase of a time 
lens φ(t) = ω0t

2/2fT, in which ω0 is the optical carrier frequency, the focal time of the n-th term 
in any of the proposed temporal phase zone plates is fTn = ω0/2na. Thus, the focal time is 
inversely proportional to the integer order n, or in other words, the time-lens frequency chirp, 
defined as na/π, increases linearly with the order n. Note that similarly to their spatial-domain 
counterparts, temporal phase zone plates do not focus all the input light around the desired 
focal time, as illustrated in Fig. 8(b). The proportion of light focused by n-th order term can 
be obtained by the square of its coefficient in the above series expansions [Eqs. (13) and 
(14)]. In particular, the light-collecting efficiencies (i.e., the proportion of focused light) 
around the n-th focal time for temporal RWZP and temporal GPZP devices are 

 ( ) 2
4 sin 2 ,RW n nη π π=     (15) 

 ( ) 2

0 .G nJη = Γ    (16) 

Specifically, the light-collecting efficiency of a temporal GPZP is a slowly decaying periodic 
function of the phase-modulation amplitude, which is shown in Fig. 9(a). Therefore, for a 
temporal GPZP of any prescribed order |n|≠0, there is an optimum phase-modulation 
amplitude, as indicated by the arrows in Fig. 9(a), which ensures that the highest light-
collecting efficiency is achieved for the target order while lowering the energy focused to 
other terms. The optimum efficiencies of temporal GPZPs and temporal RWZPs are shown in 
Fig. 9(b). The temporal RWZP has a higher light-collecting efficiency than the temporal 
GPZP when the order |n| is 1. But for higher orders |n|>1, temporal GPZPs have much higher 
light-collecting efficiency than temporal RWZPs. 
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Fig. 9. (a) The light-collecting efficiency of temporal GPZP. The optimum phase-modulation 
amplitude for each order n is indicated by arrows. (b) The light-collecting efficiency of 
temporal GPZP and temporal RWZP, respectively. 

A temporal phase zone plate can be practically realized by using an EOPM, which is 
driven by electronic waveforms with the profiles defined in Eqs. (11) and (12). In practice, 
the electronic waveforms can be obtained from a high-speed arbitrary waveform generator 
(AWG). Similarly to temporal intensity zone plates, for a given phase-modulation frequency-
chirp factor a, the temporal aperture must be limited due to the finite frequency bandwidth of 
the AWG. Particularly, the temporal apertures of temporal RWZPs and temporal GPZPs must 
satisfy ∆tRW < fs /3.5|a| and ∆tGP < fsπ/|a|, respectively. As for the intensity zone plate analysis, 
the time-lens temporal resolution (δτ) is estimated as δτ = 1/∆f [4, 7], where ∆f = |na|∆t /π is 
the total frequency bandwidth induced by a quadratic phase φ(t) = nat2 along an aperture ∆t. 
The TBPs and temporal resolutions of temporal RWZPs and temporal GPZPs are finally 
limited by the following inequalities 

 3.5 ,RW sn fδτ π≥  (17) 

 1 .GP sn fδτ ≥  (18) 

 2= 12.6 ,RW RW RW sTBP t n f aδτ πΔ ≤  (19) 

 2
GP GP GP sTBP t n f aδτ π= Δ ≤  (20) 

Equations (17) and (18) show that the temporal resolutions increase as 1/|n|fs. In addition, 
the temporal apertures, and corresponding TBPs, are inversely proportional to the chirp factor 
|a|, and consequently, they can be made arbitrarily large by accordingly lowering down this 
factor. Considering again that the time-lens frequency chirp is typically inversely proportional 
to the dispersion value in the system, the temporal apertures and TBPs of temporal phase zone 
plates are similarly limited by the amount of dispersion that can be practically introduced in 
the system. Equations (17)-(20) also show that temporal GPZPs have better TBPs and 
resolutions than temporal RWZPs, which is associated with the fact that in practice, the 
sinusoidal profile of a GPZP is easier to realize, i.e., it requires less modulation bandwidth, 
than the rectangular profile of a RWZP. Moreover, temporal GPZPs offer a significantly 
larger light-collecting efficiency for order |n|>1, as shown in Fig. 9(b). Thus, our 
experimental demonstrations focus on temporal GPZPs. 

3.2 Numerical simulations and experiments 

Temporal GPZPs are numerically and experimentally demonstrated, while temporal RWZPs 
are numerically verified. A following brief comparison is then given. 

3.2.1 Temporal Gabor phase-shift zone plate 

To demonstrate the introduced temporal phase zone plate concept, we set up a linear optical 
pulse compression experiment, in which 1st-order, 2nd-order, and 3rd-order temporal GPZPs 
are used. Figure 10 shows the linear optical pulse compression scheme. Light from a 
continuous-wave (CW) laser at a wavelength of 1,550 nm is amplified and sent through a 25-
GHz EOPM (Vπ = 3.8 V), which is driven by the electronic waveforms generated by a 24 
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Gsamples/s AWG and amplified by a 12.5-GHz electronic amplifier. The phase modulated 
light is sent through a reflective linearly chirped fiber Bragg grating (LCFBG), which 
introduces a predominantly 1st-order dispersion of 10,000 ps/nm over a bandwidth of 
~0.5nm. After dispersion, the light is detected by a 500-GHz optical sampling oscilloscope. 

 

Fig. 10. Experimental scheme for linear optical pulse compression using the GPZP concept. 

According to Eq. (16), for orders n = 1, 2, 3, the optimal phase-modulation amplitudes are 
respectively 1.84 rad, 3.05 rad, and 4.2 rad, which correspond to light-collecting efficiencies 
of 33.9%, 23.7%, and 18.9%, respectively. Limited by the available electronic amplifier 
(maximum voltage amplitude ~0.8Vπ), a phase-modulation amplitude of only Γ0 ≤ 0.8π is 
applied in all the reported experiments. The ideal modulating electronic waveforms, which 
are defined according to the target phase modulation profiles [Eq. (12)] considering the 
defined maximum voltage amplitude, are shown in Fig. 11 for 1st-order, 2nd-order, and 3rd-
order temporal GPZPs (thick green curves). The measured electronic waveforms (thin blue 
curves in Fig. 11), as generated by the AWG, are slightly distorted mainly due to the limited 
bandwidth of the AWG. In the pulse compression experiments, the time-lens frequency chirp 
must be fixed to exactly compensate for the LCFBG dispersion. Thus, a lower |a| is needed as 
the order n is increased. As a result, the temporal apertures, which are 1.88 ns, 3.85 ns, and 
5.77 ns, respectively, increase as the order n increases from 1 to 3. 

 

Fig. 11. Ideal and experimentally measured electronic waveforms for temporal phase 
modulation in the implemented temporal GPZPs for orders (a) n = 1, (b) n = 2, and (c) n = 3. 

Figure 12 shows the spectra of the CW light (red dotted curves) and the modulated light 
(black solid curves). After the phase modulation, the spectra are effectively broadened. The 
phase-modulated light has a larger spectrum than intensity-modulated light, as shown in Fig. 
4 and Fig. 12. The reason for this is the light-collecting efficiency of the temporal phase zone 
plate is higher. As predicted by Eq. (18), a higher order with the same sampling rate translates 
into an improved temporal resolution. In particular, we estimate that the FWHM of the 
compressed temporal pulses for the orders n = 1, 2, 3 should ideally be 36.5 ps, 17.8 ps, 13.3 
ps, respectively, as shown in Fig. 13 (thick green solid curves). Deviations from these 
predictions are expected based on the described distortions in the practical temporal phase 
modulation profiles. The compressed pulse waveforms obtained in the experiments (thin blue 
solid curves) are in fairly good agreement with those calculated through numerical 
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simulations (red dotted curves), in which the deviations in the modulating electronic 
waveform and the bandwidth constraint of the EOPM are considered. For the cases of order n 
= 1, 2, 3, the FWHM of the compressed temporal pulses in the experiments are 38.6 ps, 23.9 
ps, and 25.5 ps, respectively, and the corresponding values obtained in the simulations are 
40.8 ps, 22 ps, and 23.6 ps, respectively. These results indicate that deviations in the phase 
modulating profiles have a more detrimental effect on the performance of higher-order focal 
terms. There is also a good agreement between the simulations and experiments concerning 
the temporal side-lobe structures outside the compressed pulse window, which are mainly 
induced by the presence of input light outside the time-lens aperture and the light collected 
into different focal times. These side-lobe structures can be additionally reduced by 
temporally filtering out the light beyond the aperture. 

In the reported experiments, the power of the CW laser is 7.94 dBm (6.2 mW). As a result 
of the large loss induced by the EOPM (2.34 dB) and the LCFBG (10.96 dB), we used an 
optical amplifier, as shown in Fig. 10. The average powers of the output was measured (by a 
power meter) to be 1.22 dBm (1.3 mW) in all the reported experiments. The peak power of 
the outputs for the order n = 1, 2, 3 are directly measured (by the optical sampling 
oscilloscope) to be 11.46 dBm (14 mW), 14.31 dBm (27 mW), and 14.15 dBm (26 mW), 
respectively. The light-collecting efficiency can be estimated as the ratio of output-energy in 
the main lobe (estimated from the measured peak power and duration of the compressed 
pulse) versus output-energy during the temporal aperture (estimated from the measured 
output average power and duration of the aperture). Assuming that the main lobe has a 
Gaussian-like shape, the light-collecting efficiencies for the orders n = 1, 2, 3 were estimated 
to be 23.5%, 14.8%, and 9.4%, respectively. As expected, the light-collecting efficiency 
decreases as the order is increased. Notice also that the light-collecting efficiency into the 
order of interest could be further optimized by properly selecting the phase-modulation 
amplitude [see Fig. 9(a)]. For the sake of convenience, this optimization was not carried out 
in the experiments reported here. 

 

Fig. 12. Spectra of the CW light and the light modulated by temporal GPZPs for orders (a) n = 
1, (b) n = 2, and (c) n = 3. The spectra are measured by an optical spectrum analyzer, which 
has a resolution of 0.01 nm. 

 

Fig. 13. Temporally compressed intensity waveforms in the ideal case, simulation, and 
experiment using temporal GPZPs of orders (a) n = 1, (b) n = 2, and (c) n = 3. (d)-(f) show a 
closer view of the compressed optical pulses in (a)-(c). All waveforms are represented in 
normalized units. 

#189054 - $15.00 USD Received 1 May 2013; revised 27 Jun 2013; accepted 28 Jun 2013; published 5 Jul 2013
(C) 2013 OSA 15 July 2013 | Vol. 21,  No. 14 | DOI:10.1364/OE.21.016814 | OPTICS EXPRESS  16826



3.2.2 Temporal Rayleigh-Wood phase reversal zone plate 

As high-speed rectangular shapes are difficult to realize in a practical experiment, we 
numerically demonstrate pulse compression based on temporal RWZPs, where orders n = 1, 
2, 3 are used. The system scheme is the same as the one shown in Fig. 10. To fully 
demonstrate the performance of the temporal RWZP, a comparison of pulse compression 
based on the temporal RWZP and that based on the temporal GPZP is illustrated in Fig. 14. 
The phase-modulation profiles of temporal RWZPs (red solid curves) and temporal GZPs 
(blue dotted curves) are shown in Fig. 14(a)-14(c). These profiles are directly calculated from 
the analytical expressions in Eqs. (11) and (12). Note that the constant phase π/2 in Eq. (11) is 
omitted here. To optimize the light-collecting efficiencies, the optimal phase-modulation 
amplitudes for 1st-order, 2nd-order, and 3rd-order temporal GPZPs are 1.84 rad, 3.05 rad, and 
4.2 rad, respectively. Differently, the phase-modulation amplitude for a temporal RWZP of 
any order is π/2, and thus the light-collecting efficiency for a temporal RWZP is independent 
of the phase-modulation amplitude, as shown in Fig. 9. The output compressed pulses 
corresponding to Fig. 14(a)-14(c) are shown in Fig. 14(d)-14(f), respectively. For temporal 
RWZPs of orders n = 1 and 3, the peak powers of the outputs (red solid curves) are 19 and 
11.8 times larger than the average power of the input CW light, respectively. For temporal 
RWZPs of orders n = 2, there is no output compressed pulse [Fig. 14(e)] because the light-
collecting efficiency is zero, as predicted by Eq. (15). For temporal GZPs of orders n = 1, 2, 
3, the peak powers of the outputs (blue dotted curves) are 19, 58.5, and 102.5 times larger 
than the average power of the input CW light, respectively. Notice that these simulations do 
not take into consideration the passive losses in the modulation and dispersion devices. These 
results confirm that although temporal GPZPs suffer from limited light-collecting efficiency, 
they are potentially interesting for high-energy pulse generation by acting over longer input 
signal durations (higher input signal energies). For this purpose, the passive losses of the 
phase modulation and dispersive processes should be minimized. 

To give some more details on the side-lobe structure of the compressed pulses, the 
normalized spectra of the output compressed pulses are shown in the right sets of Fig. 14(d)-
14(f). Any of these spectra includes a main lobe with a Gaussian-like profile and some side-
lobes. The resulting spectra are thus similar to those shown in Fig. 6(e) and 6(f) for the 
temporal intensity zone plates, except that the side-lobes have less energy in the phase zone 
plate cases. Therefore, from the presented results, it can be inferred that temporal phase zone 
plates induce a lower background than their intensity-modulation counterparts in pulse 
compression schemes. 

 

Fig. 14. Phase-modulation profiles for temporal RWZPs and temporal GPZPs of orders (a) n = 
1, (b) n = 2, and (c) n = 3. The outputs in (d)-(f) correspond to (a)-(c), respectively. The left 
insets in (d)-(f) show a closer view of the output compressed optical pulses. The right insets in 
(d)-(f) are normalized spectra of the output compressed optical pulses. 
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3.3 Brief comparison between the two phase zone plate concepts 

As discussed in subsection 2.3, the modulation bandwidth for a temporal GPZP is limited, 
while the modulation bandwidth for a temporal RWZP is ideally infinite. Therefore, a 
temporal GPZP is easier to realize than a temporal RWZP in terms of modulation bandwidth. 

Although 1st-order temporal GPZP has a slightly lower light-collecting efficiency than 
1st-order temporal RWZP, higher-order (|n|>1) temporal GPZPs have much higher light-
collecting efficiency than temporal RWZPs, as shown in Fig. 9. It is important to note that 
higher-order temporal phase zone plates have larger temporal aperture and better temporal 
resolution. 

Apart from these differences, both the temporal GPZP and the temporal FZP can offer 
large temporal apertures by the use of large dispersion. The resolutions of 1st-order temporal 
phase zone plates are both directly limited by the bandwidth of the modulating signals, while 
better resolution can be achieved by use of higher-order temporal GPZPs. Compared to 
temporal intensity zone plates, temporal phase zone plates have higher light-collecting 
efficiency and induce less background in pulse compression schemes. 

4. Example of application for temporal imaging 

In this subsection, we numerically provide several examples of temporal imaging based on 
temporal zone plates. A conventional temporal imaging system is shown in Fig. 15. In this 
system, a three-pulse sequence [1011] of unit amplitude Gaussian pulses is first dispersed, 
then linearly chirped (or quadratic phase shifted) by a time lens, and finally dispersed. The 
FWHM of any input pulse is 27.7 ps, while the repetition rate is 10GHz. When the imaging 
condition is satisfied, the output will be a replica of the input signal scaled in time [7]. In Fig. 
15, the optical carrier frequency of input optical signal is 1550 nm, and the dispersion φ1″ and 
φ2″ are 10000 ps/nm and 2000 ps/nm, respectively. Thus the time scale is given by the ratio of 
the output dispersion to the input dispersion, i.e. M = −2000/10000 → M = −1/5, which is 
shown in Fig. 15. Figure 16 shows the temporal intensity profiles (a-d) and spectra (e-h) of 
the output optical signals when the time lens in Fig. 15 is replaced with different temporal 
zone plates. Again, 2nd-order and 3rd-order temporal RWZPs cannot work as a result of their 
low light-collecting efficiency. Generally, time-scaled images are generated, although they 
are somewhat distorted. The FWHM of any output pulse is about 5.54 ps, while the repetition 
rate is 50GHz. The quality of the output images (b>c>d>a) is seen to be proportional to the 
light-collecting efficiency of the zone plates. However, according to the imaging condition [6, 
7], the time-lens frequency chirp is approximately inversely proportional to the smaller 
dispersion value in the system (e.g. here it is 2000 ps/nm). Besides that a small time scale 
(|M|<<1) for temporal compression [or a large time scale (|M|>>1) for temporal 
magnification] is also desired. Thus the second dispersion amount in the system must be 1/|M| 
times (for temporal compression) or |M| times (for temporal magnification), larger than this 
smaller dispersion. As a result, the temporal aperture and TBP of a temporal zone plate will 
be greatly limited by the achievable dispersion amount. For example, to achieve the 
performance in Fig. 16(a)-16(d), AWG sampling rates of 150 Gsamples/s, 150 Gsamples/s, 
75 Gsamples/s, and 50 Gsamples/s will be needed, respectively. 

Although temporal imaging can be implemented by temporal zone plates, the temporal 
apertures and TBPs will be ultimately restricted by the achievable dispersion. Several 
examples of temporal imaging are given here to demonstrate the potential of our temporal 
zone plates to implement temporal imaging. However, the numerical simulations were not 
optimized. In practice, parameters such as temporal pulse width, repetition rate, dispersion 
amount, and time scale should be carefully optimized considering the experimental 
limitations. 
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Fig. 15. Temporal imaging system, where the optical carrier frequency of input optical signal 
is 1550 nm, dispersion φ1″ and φ2″ are 10000 ps/nm and 2000 ps/nm, respectively. 

 

Fig. 16. The temporal intensity profiles (a)-(d) and spectra (e)-(h) of the output optical signals 
when the time lens in Fig. 15 is replaced with different zone plates. 

5. Conclusions 

In summary, two different kinds of temporal zone plates have been introduced and 
investigated, respectively based on temporal intensity modulation and temporal phase 
modulation. Temporal zone plates overcome the severe limitations on TBP (ratio between 
temporal aperture and resolution) of linear electro-optic time lenses. In particular, temporal 
zone plates can be ideally designed to offer a temporal aperture as large as desired, practically 
limited only by the amount of dispersion needed in the processing systems. Their time 
resolution depends inversely on the achievable temporal modulation bandwidth and operation 
order. In practice, only temporal phase zone plates, particularly GPZPs, of higher order 
(|n|>1) can be realistically implemented on the basis of their light-collecting efficiency 
performance. Hence, several times higher temporal resolutions can be achieved by use of 
high-order GPZPs. Additionally, the light-collecting efficiency in GPZPs can be optimized 
into the desired order by properly fixing the phase-modulation amplitude. Moreover, temporal 
phase zone plates offer higher light-collecting efficiency, leading to notably improved 
performance in pulse compression and temporal imaging systems, than their intensity-
modulation counterparts. 

The linear pulse compression experiments demonstrated here indicate that the temporal 
phase zone plate concept is a very promising approach to increase the energetic efficiency of 
previous schemes based on electro-optic time lenses by acting over longer input signal 
durations (higher input signal energies), leading to significantly increased output pulse peak 
powers. In the experiments reported here, we have obtained light-collecting efficiencies of 
23.5%, 14.8%, and 9.4%, for temporal GPZPs of orders n = 1, 2, 3 respectively. Similar 
improvements may be anticipated for many other systems based on the use of time lenses by 
exploiting the significant TBP improvement offered by the temporal zone plate concepts 
introduced in this paper. 
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