Cihang Kong
Asscociate professor
Research interest: Multiphoton microscopy, Coherent Raman scattering microscopy, fs laser etc
Email: chkong@physik.uni-bielefeld.de

教育经历:
2015.09-2019.08 香港大学 电机电子工程系 博士
2012.09-2015.08 香港大学 医学工程系 工学学士(一级荣誉)
2011.09-2012.07 清华大学 电子工程系 预科

工作经历:
2018.12至今 比勒费尔德大学 博士后

论文:

  1. Kong, C, Pilger, C, Hachmeister, H, Wei, X, Cheung, T. H, Lai, C. S, … & Huser, T. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light: Science & Applications, 9(1), 1-12.(2020).
    https://www.nature.com/articles/s41377-020-0259-2
  2. Ren, Y. X, Zeng, X, Zhou, L. M, Kong, C, Mao, H, Qiu, C. W., … & Wong, K. K.Photonic nanojet mediated backaction of dielectric microparticles. ACS Photonics. (2020). https://pubs.acs.org/doi/10.1021/acsphotonics.0c00242
  3. He, H, Kong, C, Chan, K. Y, So, W. L, Fok, H. K, Ren, Y. X, … & Wong, K. K.Resolution enhancement in an extended depth of field for volumetric two-photon microscopy. Optics Letters, 45(11), 3054-3057. (2020).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-11-3054&origin=search
  4. Ren, Y. X. Kong, C, He, H, Zeng, X, Tsia, K. K, & Wong, K. K.Encrypted wide-field two-photon microscopy with single-pixel detection and compressed sensing. Applied Physics Express, 13(3), 032007. (2020).
    https://iopscience.iop.org/article/10.35848/1882-0786/ab7409
  5. He, H, Kong, C, Tan, X. J, Chan, K. Y, Ren, Y. X, Tsia, K. K, & Wong, K. K. Depth-resolved volumetric two-photon microscopy based on dual Airy beam scanning. Optics letters, 44(21), 5238-5241. (2019).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-21-5238&origin=search
  6. Yu, Y, Kong, C, Li, B, Kang, J, Ren, Y. X, Luo, Z. C, & Wong, K. K. Behavioral similarity of dissipative solitons in an ultrafast fiber laser. Optics Letters, 44(19), 4813-4816. (2019).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-19-4813&origin=search
  7. Li, C, Kong, C, & Wong, K. K.High Energy Noise-Like Pulse Generation from a Mode-Locked Thulium-Doped Fiber Laser at 1.7 μm. IEEE Photonics Journal, 11(6), 1-6. (2019).
    https://ieeexplore.ieee.org/document/8836607
  8. Wu, J, Mak, H. K, Chan, Y. K, Lin, C, Kong, C, Leung, C. K. S., & Shum, H. C. An in vitro pressure model towards studying the response of primary retinal ganglion cells to elevated hydrostatic pressures.Scientificreports,9(1),1-12.(2019).
    https://www.nature.com/articles/s41598-019-45510-7?utm_source=other&utm_medium=other&utm_content=null&utm_campaign=JRCN_1_LW01_CN_SCIREP_article_paid_XMOL
  9. Tan, X. J, Kong, C, Ren, Y. X, Lai, C. S, Tsia, K. K, & Wong, K. K. Volumetric two-photon microscopy with a non-diffracting Airy beam. Optics Letters, 44(2), 391-394. (2019).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-2-391&origin=search
  10. Li, C, Shi, J, Gong, X, Kong, C, Luo, Z, Song, L, & Wong, K. K. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging. Optics Letters,43(23),5849-5852.(2018).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-23-5849&origin=search
  11. Luo, Z. C, Kang, J. Q, Liu, M, Li, C, Kong, C. H, Yu, Y, & Wong, K. K. Optical rogue waves by random dissipative soliton buildup in a fiber laser. IEEE Photonics Technology Letters, 30(20), 1803-1806.(2018).
    https://ieeexplore.ieee.org/document/8463503
  12. Kong, C, Wei, X, Kang, J, Tan, S, Tsia, K, & Wong, K. K. Ultra-broadband spatiotemporal sweeping device for high-speed optical imaging. Optics letters, 43(15), 3546-3549.(2018).
    https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-15-3546&origin=search
  13. Kong, C, Pilger, C, Hachmeister, H, Wei, X, Cheung, T. H, Lai, C. S, … & Wong, K. K.Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. Biomedical Optics Express, 8(11), 4921-4932. (2017).
    https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-8-11-4921&id=375109
  14. Kong, C, Wei, X, Tsia, K. K, & Wong, K. K.Ultrafast Green-Light Swept-Source Imaging Through Advanced Fiber-Optic Technologies. IEEE Journal of Selected Topics in Quantum Electronics, 24(3), 1-5. (2017).
    https://ieeexplore.ieee.org/document/8063314
  15. Kang, J, Kong, C, Feng, P, Wei, X, Luo, Z. C, Lam, E. Y, & Wong, K. K. Broadband High-Energy All-Fiber Laser at 1.6 μm. IEEE Photonics Technology Letters, 30(4), 311-314.(2017).
    https://ieeexplore.ieee.org/document/8240981
  16. Li, C, Wei, X, Kong, C, Tan, S, Chen, N, Kang, J, & Wong, K. K.Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics, 2(12), 121302. (2017).
    https://aip.scitation.org/doi/full/10.1063/1.4996441
  17. Yang, T, Wei, ., Kong, C, Tan, S, Tsia, K. K, & Wong, K. K. An ultrafast wideband discretely swept fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 24(3), 1-5. (2017).
    https://ieeexplore.ieee.org/document/8038771
  18. Wei, X, Kong, C, Sy, S., Ko, H, Tsia, K. K, & Wong, K. K.Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber. Biomedical optics express, 7(12), 5208-5217. (2016).
    https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-7-12-5208&id=354855
  19. Wei, X, Kong, C, Samanta, G. K, Tsia, K. K, & Wong, K. K.Self-healing highly-chirped fiber laser at 1.0μm.OpticsExpress,24(24),27577-27586.(2016).
    https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-24-24-27577&id=354765